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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1511

FLIGHT MEASUREMENTS OF THE LATERAL AND DIRECTIONAL
STABILITY AND CONTROL CHARACTERISTICS OF AN
ATRPLANE HAVING A 35° SWEPTBACK WING WITH
4O-PERCENT—SPAN SLOTS AND A COMPARISON
WITH WIND-TUNNEL DATA

By S. A. Sjoberg and J. P. Reeder
SUMMARY

Flight tests have been conducted to determine the lateral and direc—
tional stability and control characteristics of an airplane on which the
wing penels are swept back 35°. For these tests, the wings were equipped
with slots extending from 40 to 80 percent of the span of the sweptback
wing panels measured from the inboard end. Wind~tunnel tests were made
of a model of the airplane and wherever possible the flight and wind—tumel
data have been compared.

The directional stability was found to be positive with flaps up or
down at ell speeds tested. A lerge increesse in dihedral effect with
decrease in speed was noted, end the agreement between flight and wind—
tunnel meesurements of dihedral effect was excellent except at high
normsl-force coefficients. Oscillations of the airplane and rudder
resulting from abrupt deflection and release of the rudder were satis—
factorily demped in all ceses. The rolling motions involved in the oscil—
lations were greater than normal, however, and the ailerons tended to
float in phase with the sideslip angle. Flight and wind-tunnel measure-
ments of the aileron rolling effectiveness expressed by the rate of change
of the rolling-moment coefficient with total aileron angle dCL/dBa were

in excellent agreement. The maximum values of the wing-tip helix angle
pb/2V reached in rudder fixed aileron rolls were low. At low speed the
high dihedral effect csused & considerable reduction in the values of
pb/2V that could be obtained.

INTRODUCTION.

Flight tests ere being conducted at the Langley Laboratory of the
NACA to determine the low—speed stability and control characteristics of
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en alrplane having a 35° sweptback wing. This paper presents the lateral
and directional stability and control characteristics with slots alcng

4O percent of the span of the sweptback wing panels. These slots extended
from 40 percent to 80 percent of the span of the sweptback wing panels
measwred from the inboard ende Wherever possible the flight results

are compared with results obtained on a ﬂ%g-scale model of the alrplane

in the Langley 300 MPH T-= by 10-foot tumnel.

COEFFICIENTS AND SYMBOLS

Cy normal-force coefficient (%nw/§c$>

an acceleration normal to thrust axis, gravitational units
w alrplane weight, pounds

q. impact pressure, pounds per square foot

S wing area, square feet

8q totel aileron angle, degrees

Br rudder angle, degrees

B sidesllip angle, degrees

c, rolling-moment coefficient (i/qcs€>

Ch yewing-moment coefficlent <N / chb>
L 'rolling moment, foot—pounds

N yawing moment, foot—pounds

b wing span, feet

14 engle of ysw, degrees

pb/2V wing~tip helix angle, radians

C; rate of change of rolling-moment coefficient with wing—
tip helix angle (dc; /ARDY
P g ( I/QV/

v true airspeed, feet per second

P rolling velocity, redians per second
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AIRPLANE

The airplane tested has the outer wing panels sweptback 35° at the
quarter—chord line, A three-~view drawing of the test airplane 1s shown
as figure 1 and general dimensions asre listed in teble I. Figures 2 and 3
are photographs of the airplane. Wing slote which extended from 40 percent
to 80 percent of the span of the sweptback wing panels, measured from the
inboard end, were instelled on the airplane for the present tests. A cross
section of the slot and the forward pert of the wing in & plane normal to
the wing leading edge 1is shown in figure UL,

The main landing gear of the airplene could not be retracted. The
nose gear was retracted for the flap-up tests and extended for the flap-
down tests, The variation of aileron position with stick—grip position
is shown in figure 5 and the varistion of rudder position with rudder-
pedal position is shown in figure 6. Because of structural limitations,
the airplane was restricted in sideslip. The maximum alloweble side-
slip angle varied from 15° at 130 miles per hour to 7° at 200 miles per
hour.

INSTRUMENTATION

The following instruments were installed in the airplene:

NACA instrument Measured quantity
;;;er | Time (for synchronizing all records)
Airspeed recorder Airspeed
Control-position recorders Alleron, rudder, and elevator positions
Control—=force recorders Pedal and stick forces
Sideslip-engle recorder and Sideslip angle

indicator
Recording inclinometer Angle of bank
Recording accelercmeter Normal, longitudinel, and transverse
accelerations

Angular—velocity recorders Rolling and yawing velocities
Free-alr tempereture indicator | Temperature
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Airspeed was measured with a swiveling static head mounted on a boom v
1 chord shead of the right wing tip and a shielded total head mounted
below the same boom., The airspeed installation was calibrated by means
of a trailing airspeed head. Airspeed as used herein is calibrated
airspeed, which corresponds to the reading of & standerd Army-Navy alrspeed
meter connected to & pitot—static system free from position error.

Sideslip angles were measured with & vene mounted on & boom 1 chord
ahead of the left wing tip. In order to determine whether angularity of
flow at the wing tip caused errors in the measured sideslip angles, a
calibretion flight was made with vanes mounted 1 chord ahead of both
wing tips. The averasge of the two readings was assumed to be the carrect
sideslip angle. These tests showed that the angularity of flow variled
from approximetely 0.2° outflow at 110 miles per hour to 1.0° outflow
at 200 miles per hour and that the angularity of flow was independent of
sideslip angle. A carrection has been applied to the measuned sideslip
angles to account for this effect.

Alleron end rudder positions were measured at the control surfaces,
and the elevator position was measured on the control cable about 8 feet

forward of the elevatcr.
TESTS, RESULTS, AND DISCUSSION

The lateral and directionel stability and control characteristics
were messured in steady sideslips, directionsl oscillations, rudder kicks,
and sileron rolls. In order to ensure that propeller operation would not
mask any effects of sweepback, all the tests except aileron rolls were
mede with the engine idling. Aileron rolls were made with power for
level flight as it expedited the tests, and power effects on the alleron
rolling effectiveness were expected to be negligible.

Steady Sideslips

The static lateral and directional stability and control characteris—
tics as measured in steady sideslips are shown in figure 7 for the flap-up
condition and in figure 8 for the flap—down condition. In the sideslip
at V, = 114 miles per hour (fig. 7(a)), the sideslip-aengle range which
could be covered was restricted in a right sideslip both by the available
aileron deflection and wing stalling and in & left sideslip by wing
stalling.

The deta show that the rudder—fixed and rudder—free directional >
stability, as measured by the variation of rudder angle and rudder force
with sideslip angle, is positive with flaps up or down at all test speeds.
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Ingpection of the alleron-engle and aileron-force curves of
figures 7 and 8 shows a large increese in dihedral effect with decrease
in epeed.

This increase 1s shown more clearly in figure 9, where the variatim
of ealleron angle with sideslip angle dBa/dB is plotted against normel-

force coefficlent Cy. The values of dSa/aB wore measured at zero

sideslip angle. The pilot raised mild obJections to the high dihedral
effect which was present at low speeds because, in meking landing
approeches and landings, large lateral trim changes accompanied

rudder movements. Figure T(e) shows that the stick-—free dihedral effect
was negetive at the highest speed tested, 198 miles per hour. The

pilot objected to this condition, which at higher speed womld probably
beccme more pronounced.

Sideslips were also made in the flap-up, engine—idling conditions
with the airplane asymmetrically loaded. These flights were made by
using gasoline from the ncse tank with one wing tank full and the other
wing tank empty. This arrangement resulted in roiling moments about the
center line of the eirplane of approximetely }3200 foot—pounds. This
rolling moment is believed accurate to within }300 foot—pounds.

Figure 10 shows the variation of alleron angle with sideslip angle at
different speeds with the asymmetric loedings.

In figure 10 at zero sideslip angle, the rolling moment due to the
asymmetric load is balanced by the aileron deflections given. Therefore,
the variation of rolling-mcment coefficlent with aileron deflection may
be obtained and this veriation is shown in figure 11 as the change in
rolling-mcmwent coefficient with change in aileron deflection. Figure 11
also includes data obtained in the Langley 300 MPH T— by 10-foot tunnel
on the model of the airplane, The wind-~tunnel date presented are for
the model with slots elong the outer 80 percent of the span of the swept—
back wing panels. Some wind-tunnel tests were mede without slots on the
model. A comparison of these data with those cobtained with slots on the
model showed that slots had & negligible effect on the alleron effective—
nesg except at 1ift coefficients close to the stall, The agreement between

the flight data and the wind-tunnel deta is excellent,

At the sideslip angles at which the aileron angle 1s zero in figure 10,
the rolling moment dve to the asymmetric load is balanced by the rolling
moment due to sideslip., The variation of rolling-moment coefficient with
sldeslip angle was thus obtained for various speeds and these data are
presented in figure 12, For convenience in making a comparison with wind-
tunnel data, the rolling-moment coefficients have been plotted against yaw
angle rather than sldeslip angle in figure 12. The yaw angle 1s
numerically equal to the sideslip angle but is of the opposite sign,

In figure 13, the variation of dCZ/aW with normal—~force coefficient as
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measured in flight is compared with the wind-tunnel results. Small .
differences between the flight and tunnel data may be expected from

several sources. The wind-tunnel model differed slightly from the

airplane in these tests in that on the model the outboard end of the

Lo-percent slots was at the wing tip and on the airplane the outboard

end of the slots was located 20 percent of the span of the sweptback

wing panels inboard of the wing tip. The flight values of dCz/&W

given in figure 13 cover a considerably larger range of yaw angles than
the wind-tunnel values; however, the flight data &are nearly linear
through zero yaw. In the normal—~force—coefficient range in which both
flight and wind-tunnel data are available, the agreement is good. No
direct comparison of flight and wind~-tunnel measurements of dihedral
effect and alleron effectiveness are availlable above a normal—~force
coefficient of 0.9% since sideslips with the airplane asymmetrically
loaded were not made above this normal-—force coefficient. The data

of figure 9 show that the dihedral effect, as measured by d&a/hﬁ, 18

at111 increasing at a normal-force coefficlent of 1.02, but the wind-

tunnel data of figure 13 show that the dihedral effect is decreasing above

a normal—force coefficient of approximately 0.97. Since the data were

obtained near the maximum normal-force coefficient of approximately 1.10,

a decrease in aileron effectiveness mey have occurred because of stalling.

This decrease could account for the tendency of the value of adg /A8

to increase in the flight tests. Tuft pictures indicate that the flow -
over the ailerons was quite unsteady near the stall. Also, the decrease
in dihedral effect at high normal-force coefficlents shown by the wind—
tunnel measurements may be due to the relatively low Reynolds number at
which the data were obtained.

Dynamic Directional Stability

The dynamic directional stability characteristics were investigated
by abruptly deflecting and releasing the rudder and recording the
resulting osclllation. Time histories of these maneuvers using both left
and right rudder deflectlons are shown in figures 14 and 15 for the
flap-up, engine—idling condition and in figure 16 for the flap—down,
engine—idling condition. In the oscillations at approximately 120 mlles
per hour (fig. 14) the pilot attempted to hold the stick fixed because °*
insufficlent elevator trim tab was avallable to trim the elevator stick
force to zero. In the oscillations at approximately 130 miles per hour
(fig. 16) the elevator stick force could st1ll not be trimmed to zero,
but in thils case the pilot attempted to hold the elevator fixed whille
not resisting the motton of the allerons. The oscillations at approxi-
mately 200 miles per hour were made with the stick free.

Oscillations of both the rudder and the airplane were satisfactorily >
damped. The rolling motions assoclated with the oscillations were
relatively large. The allerons, when free (figs. 15 and 16), oscillated
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for several cycles. The pilot objected to the stick "pumping" when he
attempted to hold the stick fixed (fig. 14). The data indicate that the
ailerons tended to float in phase with the sideslip angle and the allerm
oscillation 1s not attributable to the rolling of the airplane.

Wind—tunnel measurements of the directional stebility gave a value
of an/hB of 0.002 in the flap-up, engine—~idling condition. This

directional stability is of a magnitude that could be obtained on Jet—
propelled sweptback—wing airplenes without using such an unusually large
vertical tail as that on the test airplane, because the destabllizing
effect of the propeller would not be present.

Rudder Kicks

Rudder kicke were made at 120, 135, 160, and 200 miles per hour in
the flap-up, engine—idling condition and at 110, 130, and 160 miles per
hour in the flap—down, engine—idling condition. In these maneuvers the
pilot abruptly deflected the rudder and held it fixed in the deflected
position while attempting to hold the control stick fixed., Typical time
histories of these maneuvers are presented in figures 17 and 18 for the
flap-up, engine—idling condition and in figure 19 for the flap-down,
engine—idling condition. The maximum sideslip angle, rolling velocity,
yawing velocity, and rudder force obtained are plotted as a function of
rudder deflection in figures 20 and 21. In the low-speed teats the air-—
plane turned into a spiral very rapldly and in these cases the maximum
yawing velocity used is the first maximum that occurred., The date show
that at low speed where the dlhedral effect 18 high the rudder is very
effective in producing roll; but, as with straight wings, there is an
appreciable lag between the time of application of rudder and the time
that maximam rolling veloclty is reached.

Aileron Rolls

Rudder—fixed aileron rolls were made at various speeds using power
for level flight with the flape up and down. Typical time histories of
left and right aileron rolls made at 150 miles per hour with the flaps
up are shown in figure 22. The aileron-roll data were evaluated to
determine the variation of alleron effectiveness pb/2V and aileron
stick force with aileron deflection. The data for the flap-up condition
are shown in figure 23 and for the flap—down condition in figure 2k,

At 200 miles per hour with the flaps up, 30° of aileron deflection
resulted in a value of pb/2V of 0.052 in a right roll and 0.059 in a
left roll. At lower speeds the values of pb/2V were even smaller.

The flight values of pb/2V ere conaiderably lower than those estimated
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X

ac,
ddg 63 b
by using the relation ————0o = SV and by neglecting the reduction Y
C
1
P

in pb/2V resulting from dihedral effect and wing twist. A value of
dCl/dSa of 0.00096 was obtained from figure 11. A value of C; of =0.38
P

was determined by obtaining from reference 1 the value of CZP for the

straight wing resulting from unsweeping the sweptback wing and mltiplying
this value by the cosine of the sweepback angle. A comparison of values
of C; obtained in wind-tunnel tests with values of C; found by the

P D
preceding method show good agreement up to sweepback angles of at least 35°.
For 30° of aileron deflection pb/2V was calculated to be 0,076, with no

correction for the effects of sideslip or wing twist.

A brief analysis showed that in flight the rolling moment due to
dihedral effect caused & marked reduction in pb/2V. The reduction
in pb/2V was largest at low speeds because of the higher dihedral
effect and lerger sideslip angles reached in rolls at low speeds. The
wing of the test airplene had relatively low torsional Stiffness; therefore,
even at the moderate and low speeds tested, wing twist may have caused
some reduction in pb/av.

CONCLUSIONS

The conclusions. reached concerning the lateral and directional
stability and control characteristics of an airplane having a 35° gweptback
wing with 40-percent—span slots may be summarized as follows:

1. Both the rudder—free and rudder—fixed directional stability were
positive with flaps up ar down at all speeds tested.

2. The dihedral effect as measured by the rate of change of
rolling-moment coefficient with angle of yaw dCz AV increased from

0.0005 at & normal—farce coefficient of 0.33 to 0.0025 at a normal-force
coefficient of 0.9%. The agreement between the flight and wind-tunnel
measurements of dihedral effect was excellent up to a narmal-force
coefficient of approximately 0.97. Above a normal—force coefficlient

of 0.97, the wind—tunnel measurements showed dCZ dV decreasing. This

decrease may have been due to the relatively low Reynolds number at
which these tunnel data were obtained. Direct flight measurements
of d4C; /¥ were not made above a normal-force coefficlent of 0.94, but

the flight value of dSa/dB (rate of change of total aileron angle with

sideslip angle) continued to increase and indicated that dCz/d# was i
still increasing. A part of the Iincrease 1in ad /dB may have been due
to a loss in ailleron effectiveness near the stall.
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3. Osclllations of the airplane and rudder produced by abruptly
deflecting and releasing the rudder were satisfactorily damped in all
cases. The rolling motions involved in the oscillations were greater
than normal, however, and the ailerons tended to float in phase with the
sideslip angle.

L, Flight measurements of the rolling moment due to aileron deflec~
tion gave a value of dCl/dBa of 0.00096. The wind—tunnel measurements

of aileron effectiveness were in excellent agreement with the flight
measurements,

5. The maximum values of wing-tip helix engle pb/2V reached in
rudder—fixed aileron rolls were low. At 200 miles per hour, deflecting
the ailerons a total of 30° resulted in a value of pb/2V of 0.059 in
e left roll and 0.052 in a right roll. At lower speede the values
of pb/2V were even smaller, At low speed the dlhedral effect caused
a marked reduction in the values of pb/2v,

Langley Memaorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 15, 1947
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TABLE I
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ATRPLANY. DIMENSIONS AND CHARACTERISTICS

Engine..................

Propeller:
Diemeter, ft
Number of blades
Engine ~ propeller gear ratio

L]
.
-
*
*

Normal gross welght, lbe « o o ¢ o ¢ o o &

Wing:
Span, Tt
Are&,sqft.-ooo.ooo-oooo

. L) L] * L * L * *» & & o . o L

e o o

Airfoil section (normal to wing leading edge)
Modified 66,2x-116 (a=0.6)

Modified 66,2x-216 (a=0.6)

ROOt o ¢ o ¢ o o ¢ o 6 o ¢ ¢ o o o @

Tip-..-.ooo-oooo.oo
Mean aerodynamic ChOI'd., INe ¢ ¢« o ¢ o o
Leading edge M«A.Co

(in. behind 1.E. root chord)
Aspect ratio
Taper r&tio . L] ° L * ® L ] * [ ] 1 ]
Dihedral d.eg e o o 0 o o o 0 o o
Sweepback (25-percent-chord line), deg

Plain sealed wing flaps:
Totalarea,sqftlonoo-ooooo
Span (along hinge line, each), 1n. .« »
Travel,deg..............

Ailerons:
Spen (along hinge line, each), in. . .

¢ o e o o o

*
L]

L]

Area rearward of hinge center line, each,
Travel,deg..................

Horizontal tail:

e s o

sq ft

Span,_v Ine ¢ ¢ ¢ o o « ¢ o o o o o o o a o o 0+ o
To‘tal 8rea’ sq ft L] L ] - . » ® - [ ] * L] . - . L] . * -
Stabilizer area {including elevator balance), eq ft

Elevator area (behind hinge line) gq Tt

¢ o o o o

in.

Distance elevator hinge line to L.E. of M.A.C.,

Elevator travel, deg

Upward.............oc.....
Domward..ocoﬁtoooo....loo

Vertical tail:
Tixed surface area (above horizontal tai

Rudder area (behind hinge line), sq ft

Totalarea.,sqft..............

Height along hinge line, in.

l}
including rudder balance), 89 £t ¢ « o & &

® o 6 o o & ¢ o v o O

Distance elevator hinge line to L.E. of M.A.C., in.

Rud.der tra.vel, deg s o e @ 2 o o o ¢ ¢ o

e o o 8

Allison V-1710

¢ o o

* o o o o

. o ¢ o o

¢ e 0 o o

e o e @

o

10.375
« e 3
2.23

8700

33.6
. 250

9346

39.3
b 51

«84:1.00

e« o O
« 35

12,52
e
o b5

. 105
6451

417

- 175
k6.6

+
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Figure 1.- Three-view drawing of test airplane.
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Flgure 6.- Variation of right-rudder-pedal position with rudder
position. No load on system.
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Figure 7.- Steady sideslip characteristics with engine idling, flaps up,
nose wheel up.
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